平成 15 年度農林水産省 食 品 製 造 工 程 管 理 情 報 高 度 化 促 進 事 業

平成 15 年度 病原微生物データ分析実験作業 成果報告書

「Vibrio parahaemolyticus の 食品中におけるD値の検討」

> 平成 16 年 2 月 財団法人 東京顕微鏡院

平成 15 年度食品製造工程管理情報高度化促進事業病原微生物データ分析実験報告書

Vibrio parahaemolyticus の食品中における D 値の検討

(財)東京顕微鏡院 食と環境の科学センター 中川 弘、中島将次、伊藤 武

目的

腸炎ビブリオは海水、海泥、海産性の魚介類に分布し、魚介類の生食や加熱調理品あるいは魚介類から二次汚染した食品を介して食中毒を起こす主要な病原菌である。本菌食中毒防止対策として、平成13年6月7日付けで食品衛生法の一部改正により生食用魚介類およびボイルタコなどに対する細菌学的規格基準が制定された。すなわち、販売に供される生食用魚介類は1g当たり腸炎ビブリオ生菌数が100個以下でなければならないこと、ボイルされたタコなどは腸炎ビブリオ陰性でなければならないとされた。

しかし、培養液や食塩水中での腸炎ビブリオ菌株の熱抵抗性についての成績 は報告されているが、魚介類中での加熱処理による腸炎ビブリオの死滅に関す るデーターはほとんどないことから、魚介類中での腸炎ビブリオ熱抵抗性を D 値で求めた。

材料と方法

1.供試菌株

耐熱性溶血毒陽性の Vibrio parahaemolyticus 血清型 O3: K6 を使用した。

2. 供試食品

魚市場で購入した白身魚すり身および生イワシ、生マグロ、生エビから実験 室ですり身を作成した。魚介類以外に市販白菜漬けを実験材料とした。これら の食品については実験に用いる前にそれぞれ 10g を食塩ポリミキシンブイヨン 90ml に接種し、35 、18 時間増菌培養後、TCBS 寒天とクロモアガービブリオ寒天で分離培養を行ない、腸炎ビブリオ陰性であることを確認した。

3.接種菌液と試料の調整

供試菌株を 3%NaCl 加トリプトソイブイヨン (TSB) で、35 、18~24 時間培養し、本培養液を接種菌液とした。

供試食品 10gの中心部に約5mmの穴を開け、ここに培養液 $100 \mu l$ 接種した。これをストマッカー袋に入れ、食品試料と菌液をよく混合して均一にし、厚さ約1mm に調整した。1 試験 n=3 とした。

4.加熱温度と時間

加熱条件は各食品とも 50 ,55 ,60 ,65 とした。加熱時間は温度により異なり、50 では 20 秒,40 秒,60 秒,80 秒,100 秒、55 では 10 秒,15 秒,20 秒,25 秒,30 秒、60 および 65 では 5 秒,10 秒,15 秒,20 秒,25 秒とした。

5. 腸炎ビブリオ生菌数測定

加熱後各試験品を氷水中で数秒間冷却し、これに 90ml の希釈液を加え、30秒間ストマッキングした。乳剤を希釈液で 10倍段階希釈液を作成し、各希釈液 0.1mlをクロモアガービブリオ寒天(関東化学)および TCBS 寒天(日水製薬)に接種し、コンラージ棒で前面塗抹した。35、18時間培養後出現した腸炎ビブリオ集落を数え、菌数を算出した。

6.D値の算出

縦軸に菌数(Log) 横軸に加熱時間(秒)をとり、得られた測定値をプロッ

トして直線性を確認し、[D=1/傾き]の計算式より D 値を求めた。参考として得られた D 値から Z 値を求めグラフに表した。

7. 水分活性

各調整した食品は rotronic 社、ハイドロスコープ BTRS1 型で水分活性(Aw)を測定した。

結果

1.供試した食品の Aw

白身魚すり身の Aw は 0.92、イワシすり身が 0.95、マグロすり身が 0.98、エビすり身が 0.95 および白菜漬けが 0.93 であった (表 1)。

2. 加熱による市販白身魚すり身中の腸炎ビブリオの死滅と D 値

各種加熱温度における腸炎ビブリオの生残菌数は表 1 に示す如く、クロモアガービブリオ寒天での測定数の方が選択性の高い TCBS 寒天より高いことから、クロモアガービブリオ寒天で測定した成績を中心に解析した(表 2)。

- 50 加熱では 100 秒加熱でも Log 3 オーダーの菌数減少に過ぎなかった。 55 加熱では 40 秒で、60 加熱では 15 秒で菌の検出が陰性となった。65 加熱では 10 秒で 10⁷cfu が 10³cfu まで減少し、20 秒では陰性であった。(図 1)。 これらの成績から算出された各温度における D 値は 50 が 27.02 秒、55 が 4.98 秒、60 が 4.22 秒、65 が 2.61 秒であった(表 7)。 参考までに Z 値を表に示した。
- 3. 加熱によるイワシすり身中の腸炎ビブリオの死滅と D 値
 - 50 加熱では市販白身すり身と異なり、60秒で10°cfuから10°cfuに減少し、

80 秒では菌陰性であった。55 加熱では 30 秒、60 加熱では 15 秒で菌陰性であった。65 加熱では 5 秒で 10^7 cfu が 10^5 cfu に減少し、10 秒後では 10^4 cfu となった (表 3、図 2)。

各温度における D 値は 50 が 22.22 秒、55 が 8.62 秒、60 が 6.99 秒、65 が 4.70 秒であった。

4.加熱によるマグロすり身中の腸炎ビブリオの死滅と D 値

50 加熱では 100 秒後でも腸炎ビブリオは 10⁴cfu 生残した。55 加熱では他のすり身と異なり、25 秒後でも 10⁴cfu 生残した。60 、65 加熱では 15 秒で菌数陰性であった (表 4、図 3)。

各温度における D 値は 50 が 31.25 秒、55 が 8.62 秒、60 が 3.48 秒、65 が 2.63 秒であった。

5.加熱によるエビすり身中の腸炎ビブリオの死滅と D 値

50 加熱ではイワシすり身中よりは熱抵抗性が高いが、マグロすり身よりは 熱抵抗性が低く、60 秒で 3 件中 1 件が菌陰性であり、100 秒後でも 1 件が菌陽 性となった。55 加熱では 30 秒で、60 加熱では 20 秒で、65 加熱では 15 秒でそれぞれ菌陰性となった (表 5、図 4)。

各温度における D 値は 50 が 17.24 秒、55 が 10.87 秒、60 が 5.71 秒、 65 が 7.30 秒であった。

6.加熱による白菜漬け中の腸炎ビブリオの死滅と D 値

食塩が含まれる漬け物では腸炎ビブリオが生残する危険性があることからモデルとして市販白菜漬けを試料とし、加熱による腸炎ビブリオの死滅状況を観察した。均一な試料にするために葉の部分を使用したが、各温度における腸炎

ビブリオの生残菌数はバラツキが大きい。50 加熱では 100 秒後でも一部菌が 生残した。55 では 30 秒後でも菌の生存が観察されたし、60 および 65 加 熱でも 25 秒後でも菌の生残が確認された (表 6、図 5)。

各温度における D 値は 50 が 21.28 秒、60 が 18.52 秒、65 が 12.20 秒 であった。55 では生残菌数にバラツキが大きいため D 値は求めなかった。

考察

腸炎ビブリオの熱抵抗性に関するこれまでの報告では 65 加熱では 5 分、 55 加熱では 10 分で死滅すること、55 、5 分間の加熱では一部生存する株の あること、50 、20 分加熱でほとんどが死滅することが報告されている。

培養液中の腸炎ビブリオの D 値は pH の影響を受け、3%NaCl 加 TSB 培地、pH5.0 の条件下で、53 に加熱した時の D 値は 1.2 分、pH6.0 では D 値が 2.0 分、pH7.0 では 3.5 分となり、pH が高くなるに従い、熱抵抗性も高くなっている。生カキでは腸炎ビブリオが中腸腺に存在することから、カキの中心部に接種した腸炎ビブリオの 52 における D 値は 1.3~1.6 分であることも報告されている。

一方、平成 13 年 6 月に食品衛生法の一部改正によりゆでだこ、ゆでかにには中心温度が 70 、1 分の加熱あるいはこれと同等以上効力を有する方法で加熱し、腸炎ビブリオが陰性でなければ販売できないことが告示された。著者らは魚介類中の腸炎ビブリオの死滅条件を明らかにする目的で、今回は加熱による D 値を求めた。

今回はマグロやタコなどの体表面に腸炎ビブリオ汚染があるものと推察されることから、市販白身魚、イワシ、マグロ、エビの各魚種のすり身中に腸炎ビブリオを接種し、厚さを 1mm として試料を作成した。すり身中の食品成分やpH、水分活性など食品の内部環境の要因が D 値に影響することが推察されるが、

今回は主に温度条件を中心に検討した。

実験に供試した魚種により D 値は異なっているが、これは魚種による肉質や脂肪分あるいは繊維成分による影響なのかは明確に出来なかった。50 における D 値は $17.24 \sim 31.25$ 秒、55 の D 値は $4.96 \sim 10.87$ 秒、60 の D 値が $3.48 \sim 6.99$ 秒、65 の D 値が $2.61 \sim 7.30$ 秒であり、いずれも短時間で腸炎ビブリオの菌数を 1/10 に死滅させることが観察された。

今回の実験では接種菌量が 106~7cfu/g で、やや多い菌量であったが、野外での魚介類に見られる腸炎ビブリオ汚染菌量は高くて 103~6cfu/g であると考えられており、加熱による腸炎ビブリオの殺菌は容易であると推察される。なお、試料の pH、食塩濃度、水分活性などが D 値に及ぼす影響についてはさらに検討が必要であろう。

要約

白身、イワシ、マグロ、エビの各すり身に腸炎ビブリオを接種し、50 ,55 ,60 および65 の加熱温度における腸炎ビブリオの死滅状況からD値を求めた。

市販白身魚すり身中の腸炎ビブリオの D 値は 50 が 27.02 秒、55 が 4.98 秒、60 が 4.22 秒、65 が 2.61 秒であった。イワシすり身の腸炎ビブリオの D 値は 50 が 22.22 秒、55 が 8.62 秒、60 が 6.99 秒、65 が 4.70 秒であった。マグロすり身の腸炎ビブリオの D 値は 50 が 31.25 秒、55 が 8.62 秒、60 が 3.48 秒、65 が 2.63 秒であった。エビすり身中の腸炎ビブリオの D 値は 50 が 17.24 秒、55 が 10.87 秒、60 が 5.71 秒、65 が 7.30 秒であった。 魚種により D 値にやや幅が見られるが、ほぼ同様の熱抵抗性であると考えられた。

参考として用いた白菜漬け中の腸炎ビブリオの D 値は 50 で 21.28 秒、60

で 18.52 秒、65 で 12.20 秒であり、魚のすり身よりも熱抵抗性が高い成績であった。

表1実験に供した食品の水分活性

食品	1回	2回	平均
市販白身魚すり身	0.924	0.931	0.928
イワシすり身	0.950	0.949	0.950
マグロすり身	0.977	0.985	0.981
エビすり身	0.945	0.947	0.946
白菜漬け	0.934	0.934	0.934

表 2 白身魚すり身中の腸炎ビブリオの死滅

50							
培地		blank	20秒	40秒	60秒	80秒	100秒
	1	5.0×10^7	3.2×10^6	1.5×10^7	1.7×10^4	2.0×10^{3}	2.2×10^{3}
CHROM agar	2	3.4×10^7	1.3×10^7	6.0×10^{5}	2.2×10^{4}	5.5×10^4	2.3×10^{4}
CHROIVI agai	3	1.8×10^7	1.6×10^{6}	6.0×10^{5}	5.2×10^4	1.0×10^{3}	3.4×10^{4}
·	平均	3.4×10^7	5.9×10^6	5.4×10^6	3.0×10^{4}	1.9 × 10⁴	2.0×10^{4}
	1	1.6 × 10⁵	4.6×10^{5}	4.6 × 10 ⁵	4.5×10^{3}	2.6×10^{3}	1.0×10^{2}
TCBS	2	7.6×10^{5}	3.5×10^{5}	6.8 × 10⁵	1.0×10^{5}	3.4×10^3	-
	3	9.0×10^{5}	1.5×10^{5}	LA	4.0×10^4	-	1.0×10^{2}
55							
_ 55 培地		blank	20秒	40秒	60秒	80秒	100秒
	1	4.2×10^{7}	3.8×10^{3}	-	-	-	-
OUDOM	2	5.6×10^7	2.2×10^{3}	_	-	-	-
CHROM agar	3	3.5×10^{7}	6.6×10^{3}	_	1.0×10^{2}	-	-
•	平均	4.4×10^{7}	4.2×10^{3}	-	-	-	-
	1	3.6×10^{6}	5.0×10^{2}	-	-	-	-
TCBS	2	1.3×10^7	3.0×10^{2}	-	-	-	-
	3	2.3×10^{7}	2.0×10^{2}	-	-	-	-
60							
 培地		blank	5秒	10秒	15秒	20秒	25秒
	1	4.3×10^{7}	8.2×10^{6}	4.4×10^{5}	2.0×10^{2}		
OUDON	2	3.4×10^{7}	1.5×10^{6}	2.0×10^{2}	-	_	-
CHROM agar	3	2.8×10^{7}	5.7×10^6	8.9×10^{3}	_	_	_
•	平均	3.5×10^7	5.1×10^6	1.5 × 10⁵	-	_	-
	1	1.1×10^{5}	1.7×10^{5}	5.8×10^4	-	-	-
TCBS	2	4.7×10^{6}	6.8×10^4	-	-	-	-
	3	2.8×10^{6}	1.7×10^4	-	-	-	-
65							
 培地		blank	10秒	20秒	30秒	40秒	50秒
<u>н 5</u>	1	2.5×10^{6}	-		-	-	-
CHROM agar	2	5.6×10^7	9.4×10^{3}	_	_	_	-
	3	4.7×10^7	9.0×10^{2}	-	-	-	-
•	平均	3.5×10^{7}	5.2×10^3	-	-	-	-
	1	1.7×10^6	-	-	-	-	-
TCBS	2	1.3×10^{7}	_	-	-	_	-
	3	1.0×10^{5}	-	-	-	-	-

表 3 イワシすり身中の腸炎ビブリオの死滅

50							
培地		blank	20秒	40秒	60秒	80秒	100秒
	1	2.9×10^{6}	8.8×10^{6}	1.6×10^{5}	3.8×10^{3}	-	-
CHROM agar	2	4.8×10^{5}	2.2×10^7	2.2×10^{5}	1.9×10^{3}	-	-
CHROIVI agai	3	1.2×10^6	1.5×10^{5}	1.6×10^{5}	1.1×10^4	-	-
	平均	1.5×10^{6}	1.0×10^{7}	1.8 × 10⁵	5.6×10^3	-	-
	1	2.2×10^{6}	1.5 × 10⁵	1.2×10^3	-	-	-
TCBS	2	5.7×10^6	6.3×10^4	2.2×10^3	-	-	-
	3	2.0×10^{7}	2.7×10^4	2.2×10^{3}	9.0×10^{2}	-	
<u>55</u> 培地		blook	10秒	4 万千小	20秒	05 1 1	30秒
	1	blank 3.3 × 10 ⁶	LA	15秒 3.7×10 ⁵	2.5 × 10 ³	25秒	3049
	2	8.4×10^6	LA LA	3.7×10^{5} 2.6×10^{5}	1.9×10^3	2.0×10^{2}	-
CHROM agar	3	2.8×10^7	LA LA	2.6×10^{5} 1.0×10^{5}	1.9×10^{3} 2.6×10^{3}	2.0 × 10	-
	ー 平均	1.3×10^7	LA LA	1.0×10^{5} 2.4×10^{5}	2.0×10^{3}	2.0×10^{2}	-
	<u> </u>	LA	LA LA	1.6×10^4	2.3 X 10	2.0 X 10	
TCBS	2	2.6 × 10 ⁵	LA	5.7×10^3	_	_	_
1000	3	4.0×10^{5}	LA	J.7 × 10	_	_	_
		7.0 × 10	LA			_	
60							
 培地		blank	10秒	15秒	20秒	25秒	30秒
	1	7.7×10^7	2.0×10^{5}	-	-	-	-
CHDOM agar	2	1.5×10^7	1.4×10^6	-	-	-	-
CHROM agar	3	2.9×10^{7}	2.9×10^{6}	-	-	-	-
	平均	4.0×10^{7}	1.5×10^6	-	-	-	-
	1	1.3×10^7	-	-	-	-	-
TCBS	2	2.5×10^{5}	2.6×10^4	-	-	-	-
	3	4.3×10^{5}	1.3×10^{5}	-	-	-	
0.5							
<u>65</u> 培地		blank	 5秒	 10秒	 15秒	 20秒	 25秒
<u> </u>	1	2.3×10^7	3.1×10^{5}	2.3×10^{5}	6.8×10^3	<u> </u>	<u> </u>
	2	1.5×10^6	1.4×10^4	2.6×10^4	1.5×10^3	_	_
CHROM agar	3	7.1×10^6	2.9×10^{5}	1.0×10^{2}	1.5 × 10	_	_
	平均	1.1×10^7	2.0 × 10 ⁵	8.5×10^4	4.2×10^{3}	_	_
	1	4.3×10^{6}	3.3×10^4	2.4×10^4	-	_	
TCBS	2	8.1×10^{5}	3.9×10^4	9.0×10^{2}	_	_	_
1000	3	3.0×10^6	1.5×10^4	-	_	_	_
	J	0.0 × 10	1.0 10	-			

表 4 マグロすり身中の腸炎ビブリオの死滅

50							
培地		blank	20秒	40秒	60秒	80秒	100秒
	1	4.8×10^{6}	4.8×10^{5}	4.0×10^{5}	6.0×10^{5}	4.3×10^{4}	1.5×10^4
CHROM agar	2	8.6×10^7	6.5×10^6	5.0 × 10⁵	3.1 × 10⁵	7.1×10^4	1.5×10^4
Of INOIN agai	3	1.5×10^7	3.9×10^6	3.6×10^{5}	2.2×10^{5}	1.3 × 10 ⁵	2.2×10^{3}
	平均	3.5×10^7	3.6×10^6	4.2 × 10⁵	3.8 × 10⁵	8.1×10^4	1.1×10^4
	1	2.9×10^{6}	3.3×10^{5}	4.8×10^{4}	-	-	-
TCBS	2	3.1×10^{6}	3.4×10^4	4.7×10^4	-	-	-
	3	1.0×10^6	5.1×10^{5}	6.1×10^3	-	-	-
55							
 培地		blank	10秒	15秒	20秒	25秒	30秒
	1	7.0×10^{6}	1.7×10^{6}	3.7×10^{5}	3.3×10^{3}	6.0×10^{2}	•
CHDOM agar	2	7.1×10^6	4.6×10^{6}	1.3×10^{5}	3.2×10^{4}	4.1×10^{4}	•
CHROM agar	3	2.4×10^{6}	1.6×10^{4}	1.3 × 10⁵	2.5×10^{4}	1.0×10^{2}	•
	平均	5.5×10^{6}	2.1×10^{6}	2.1 × 10⁵	2.0×10^{4}	1.4×10^4	•
	1	4.8×10^{5}	2.8×10^{4}	5.4×10^3	-	-	•
TCBS	2	2.3×10^{5}	7.4×10^4	-	-	-	•
	3	3.3×10^4	-	1.5×10^3	-	-	•
60							
培地		blank	5秒	10秒	15秒	20秒	25秒
	1	2.6×10^{7}	3.2×10^6	8.6×10^{3}	-	-	-
CHROM agar	2	5.2×10^6	1.6×10^{6}	3.3×10^{4}	-	-	-
CHROIVI ayai	3	2.7×10^{6}	5.0×10^6	2.0×10^{3}	-	-	-
	平均	1.1×10^7	3.3×10^{6}	1.5 × 10⁴	-	-	-
	1	3.6×10^{5}	1.3×10^{4}	-	-	-	-
TCBS	2	2.8×10^{5}	2.2×10^{4}	-	-	-	-
	3	7.0×10^{5}	2.4×10^{5}	-	-	-	-
65							
 培地		blank	5秒	10秒	15秒	20秒	25秒
	1	2.9×10^7	7.7×10^{5}	-	-	-	-
CHDOM agar	2	1.4×10^{6}	7.7×10^4	-	-	-	-
CHROM agar	3	6.5×10^{5}	1.8×10^{5}	1.6×10^{3}	-	-	-
	平均	1.0×10^7	3.4×10^{5}	1.6×10^3	_	_	_
	1	5.7 × 10⁵	2.0×10^{5}	-	-	-	-
TCBS	2	9.2×10^{4}	4.2×10^{3}	-	-	-	-
	3	2.3×10^{5}	1.4×10^{5}	-	-	-	-

表 5 エビすり身中の腸炎ビブリオの死滅

50							
培地		blank	20秒	40秒	60秒	80秒	100秒
	1	2.2×10^{6}	5.4×10^3	6.9×10^3	-	1.0×10^{2}	-
CHROM agar	2	1.6×10^{5}	2.5×10^{4}	4.0×10^{2}	4.7×10^3	-	2.0×10^{2}
Of INOIN agai	3	2.3×10^{6}	3.1×10^{5}	1.6×10^4	-	2.0×10^{2}	-
	平均	1.6×10^{6}	1.1×10^{5}	7.8×10^3	4.7×10^3	1.5×10^{2}	2.0×10^{2}
	1	1.1×10^{6}	6.5×10^3	-	-	-	-
TCBS	2	8.6×10^{5}	1.1×10^{5}	-	-	-	-
	3	4.8×10^{6}	3.8×10^{5}	-	-	-	
55							
_ 培地		blank	10秒	15秒	20秒	25秒	30秒
	1	3.0×10^{5}	6.6×10^4	1.1 × 10 ⁵	3.7×10^4		-
CLIDOM area	2	2.8×10^{5}	1.0×10^{6}	2.9×10^{5}	1.3×10^4	-	-
CHROM agar	3	2.8×10^{5}	1.3×10^{6}	4.9×10^{5}	1.6×10^3	1.6×10^{3}	-
	平均	2.9 × 10⁵	7.9 × 10⁵	3.0×10^{5}	1.7×10^{4}	1.6×10^{3}	-
	1	2.2×10^{5}	7.1×10^3	LA	-	-	-
TCBS	2	9.1×10^{5}	5.9×10^{5}	3.7×10^{4}	-	-	-
	3	8.9×10^{5}	1.6×10^{4}	3.1×10^3	-	-	-
60							
 培地		blank	5秒	10秒	15秒	20秒	25秒
	1	3.5×10^{5}	7.1×10^4	-	3.0×10^{2}	-	-
OLIDOM	2	3.5×10^4	2.9×10^{5}	2.7×10^{3}	1.0×10^{2}	-	_
CHROM agar	3	6.2×10^{5}	6.8×10^4	9.4×10^{3}	-	-	_
	平均	3.4×10^{5}	1.4 × 10⁵	6.1×10^3	2.0×10^{2}	-	-
	1	3.1×10^{5}	4.0×10^{4}	-	-	-	_
TCBS	2	8.0×10^{4}	4.0×10^{3}	-	-	-	-
	3	7.4×10^4	6.5×10^3	-	-	-	-
65							
		blank	5秒	10秒	15秒	20秒	25秒
<u> </u>	1	1.3 × 10 ⁶	2.7×10^4	-	- -	-	-
CHROM agar	2	7.6×10^{5}	7.5×10^4	2.4×10^{4}	_	_	_
	3	3.4×10^{5}	1.1×10^{5}	4.4×10^4	_	_	_
	平均	8.0 × 10 ⁵	7.1×10^4	3.4×10^4	_	_	_
	1	7.3×10^4	7.5×10^4	LA	-	-	_
TCBS	2	3.1×10^{4}	1.2×10^{5}	1.6×10^4	-	-	_
	3	1.5×10^5	2.1×10^{5}	4.9×10^{3}	-	-	_

表 6 白菜漬け中の腸炎ビブリオの死滅

接地	50							
CHROM agar 2 2.0 × 10 ⁶ 4.5 × 10 ⁵ 4.4 × 10 ⁵ 3.9 × 10 ³ 1.0 × 10 ² 2.0 × 10 ² 平均 2.0 × 10 ⁶ 8.3 × 10 ⁵ 4.4 × 10 ⁵ 3.0 × 10 ³ 9.0 × 10 ² 2.0 × 10 ² TCBS 1 - 4.4 × 10 ⁵ 2.0 × 10 ⁵ - - - 3 6.9 × 10 ⁵ 8.6 × 10 ⁵ 4.0 × 10 ⁴ - - - 55 3 6.9 × 10 ⁵ 7.7 × 10 ⁵ 6.0 × 10 ³ - 2.2 × 10 ³ - 6HROM agar 1 1.1 × 10 ⁵ 6.9 × 10 ⁵ 8.0 × 10 ⁵ LA 3.2 × 10 ³ 5.6 × 10 ³ 6HROM agar 2 1.0 × 10 ⁵ 7.4 × 10 ⁵ 2.4 × 10 ⁵ 3.9 × 10 ⁴ 1.1 × 10 ⁵ LA 1 1.1 × 10 ⁵ 6.9 × 10 ⁵ 8.0 × 10 ⁵ 1.8 × 10 ⁵ 1.4 × 10 ⁵ 2.4 × 10 ⁵ 3.9 × 10 ⁴ 1.1 × 10 ⁵ 5.6 × 10 ⁴ 1 6.1 × 10 ⁵ 7.4 × 10 ⁵ 2.4 × 10 ⁵ 3.9 × 10 ⁵ 1.1 × 10 ⁵ 4.2 × 10 ⁴ 1.2 × 10 ⁵ <	培地							100秒
3			1.5×10^{6}	1.1×10^{5}	8.9 × 10⁵	1.4×10^4	5.0×10^{2}	-
3	CHPOM agar	2	2.0×10^{6}	4.5×10^{5}		3.9×10^{3}	1.0×10^{2}	-
TCBS 2 1.2×10 ⁶ 8.6×10 ⁵ 4.0×10 ⁶	Ci il\Oivi agai	3		9.4×10^{5}		3.0×10^{2}	9.0×10^{2}	2.0×10^{2}
TCBS 2 1.2×10 ⁶ 8.6×10 ⁵ 4.0×10 ⁴		平均	2.0×10^{6}	8.3 × 10⁵	4.8×10^{5}	6.1×10^3	5.0×10^{2}	2.0×10^{2}
3 6.9 × 10 ⁵ 7.7 × 10 ⁵ 6.0 × 10 ³ - 2.2 × 10 ³ - 55		1	-		2.0×10^{5}	-	-	-
1	TCBS	2	1.2×10^6	8.6×10^{5}	4.0×10^{4}	-	-	-
接地		3	6.9×10^{5}	7.7×10^5	6.0×10^{3}	-	2.2×10^{3}	-
接地	55							
CHROM agar	 培地		blank	10秒	15秒	20秒	25秒	30秒
CHROM agar 2		1						
3 2.2 × 10 ⁴ 2.4 × 10 ⁵ 1.2 × 10 ⁵ 1.8 × 10 ⁵ 1.4 × 10 ⁴ 2.8 × 10 ⁴ 平均	OLIDOM anan							
平均	CHROW agar	3						
TCBS		平均						
TCBS 2 1.4×10 ⁵ 1.8×10 ⁵ 5.0×10 ³ 9.6×10 ⁴ 6.0×10 ⁵ 5.0×10 ⁴ 1.3×10 ⁴ 2.2×10 ⁴ 1.1×10 ⁵ 3.7×10 ⁴ 7.5×10 ⁴ - 日本地		1						
1.3×10 ⁴ 2.2×10 ⁴ 1.1×10 ⁵ 3.7×10 ⁴ 7.5×10 ⁴ -	TCBS	2	1.4×10^{5}	1.8×10^{5}	5.0×10^{3}	9.6×10^{4}		5.0×10^4
60 CHROM agar 1 6.1 × 10 ⁴ 8.0 × 10 ⁴ 2.8 × 10 ⁴ 3.0 × 10 ³ LA LA LA LA CHROM agar 2 8.5 × 10 ⁴ 2.0 × 10 ⁴ 4.6 × 10 ³ 7.0 × 10 ² 9.0 × 10 ³ LA LA LA TA		3						
培地 blank 5秒 10秒 15秒 20秒 25秒 CHROM agar 1 6.1 × 10 ⁴ 8.0 × 10 ⁴ 2.8 × 10 ⁴ 3.0 × 10 ³ LA LA 2 8.5 × 10 ⁴ 2.0 × 10 ⁴ 4.6 × 10 ³ 7.0 × 10 ² 9.0 × 10 ³ LA 3 5.0 × 10 ³ 2.5 × 10 ⁴ 9.6 × 10 ³ 2.4 × 10 ⁴ LA LA 4 1 1.1 × 10 ⁴ 1.9 × 10 ⁴ 1.9 × 10 ⁵ 2.2 × 10 ³ 9.0 × 10 ³ LA 1 1.1 × 10 ⁴ 1.9 × 10 ⁴ 1.9 × 10 ⁵ 2.2 × 10 ⁴ 1.1 × 10 ⁵ 4.4 × 10 ³ 1 1.1 × 10 ⁴ 1.9 × 10 ⁴ 1.2 × 10 ³ 1.7 × 10 ⁵ 1.1 × 10 ⁵ 3 - 3.1 × 10 ³ 8.7 × 10 ⁴ 1.2 × 10 ³ 1.7 × 10 ⁵ - 65 1 1 1.3 × 10 ⁵ 4.2 × 10 ⁴ 8.1 × 10 ³ 2.8 × 10 ⁴ 3.2 × 10 ⁴ 1.4 × 10 ⁵ 1 1.3 × 10 ⁵ 4.2 × 10 ⁴ 8.2 × 10 ³ 1.0 × 10 ⁴ 3.3 × 10 ⁴ 1.7 × 10 ⁴ </td <td>60</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	60							
CHROM agar	_ 培地		blank	5秒	10秒	15秒	20秒	25秒
CHROM agar 2 8.5×10^4 2.0×10^4 4.6×10^3 7.0×10^2 9.0×10^3 LA LA Ξ		1						
3 5.0 × 10³ 2.5 × 10⁴ 9.6 × 10³ 2.4 × 10⁴ LA LA	0110014							
平均 5.0 x 10 ⁴ 4.2 x 10 ⁴ 1.4 x 10 ⁴ 9.2 x 10 ³ 9.0 x 10 ³ LA 1 1.1 x 10 ⁴ 1.9 x 10 ⁴ 1.9 x 10 ⁵ 2.2 x 10 ⁴ 1.1 x 10 ⁵ 4.4 x 10 ³ 1 2 8.2 x 10 ³ 3.0 x 10 ⁴ 4.1 x 10 ⁴ - 2.2 x 10 ⁵ 1.1 x 10 ⁵ 3 - 3.1 x 10 ³ 8.7 x 10 ⁴ 1.2 x 10 ³ 1.7 x 10 ⁵ - 65 1 1.3 x 10 ⁵ 4.2 x 10 ⁴ 8.1 x 10 ³ 2.8 x 10 ⁴ 3.2 x 10 ⁴ 1.4 x 10 ⁵ CHROM agar 2 5.6 x 10 ⁴ 3.6 x 10 ⁴ 8.2 x 10 ³ 1.0 x 10 ⁴ 3.3 x 10 ⁴ 1.7 x 10 ⁴ 2 5.6 x 10 ⁴ 3.6 x 10 ⁴ 8.2 x 10 ³ 1.0 x 10 ⁴ 3.3 x 10 ³ 3.3 x 10 ³ 2 5.6 x 10 ⁴ 3.6 x 10 ⁴ 8.2 x 10 ³ 1.0 x 10 ⁴ 3.3 x 10 ³ 3.3 x 10 ³ 3 2.1 x 10 ⁵ 5.4 x 10 ⁵ 3.1 x 10 ⁴ 4.0 x 10 ² 8.3 x 10 ³ 3.3 x 10 ⁴ 1 3.9 x 10 ⁴ 1.5 x 10 ⁴ 2.0 x 10	CHROM agar						IA	
TCBS $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								LA
TCBS 2 8.2 × 10³ 3.0 × 10⁴ 4.1 × 10⁴ - 2.2 × 10⁵ 1.1 × 10⁵ 3 - 3.1 × 10³ 8.7 × 10⁴ 1.2 × 10³ 1.7 × 10⁵ - $\frac{65}{200}$			1.1×10^4		1.9×10^{5}		1.1×10^{5}	
65 培地 blank 5秒 10秒 15秒 20秒 25秒 CHROM agar 1 1.3×10 ⁵ 4.2×10 ⁴ 8.1×10 ³ 2.8×10 ⁴ 3.2×10 ⁴ 1.4×10 ⁵ 2 5.6×10 ⁴ 3.6×10 ⁴ 8.2×10 ³ 1.0×10 ⁴ 3.3×10 ⁴ 1.7×10 ⁴ 3 2.1×10 ⁵ 5.4×10 ⁵ 3.1×10 ⁴ 4.0×10 ² 8.3×10 ³ 3.3×10 ³ 平均 1.3×10 ⁵ 2.1×10 ⁵ 1.6×10 ⁴ 1.3×10 ⁴ 2.4×10 ⁴ 5.3×10 ⁴ TCBS 2 5.0×10 ⁵ 3.5×10 ⁴ 6.0×10 ² 3.5×10 ⁴ 2.1×10 ⁵ 8.4×10 ⁴	TCBS	2				-		1.1×10^{5}
65 培地 blank 5秒 10秒 15秒 20秒 25秒 CHROM agar 1 1.3×10 ⁵ 4.2×10 ⁴ 8.1×10 ³ 2.8×10 ⁴ 3.2×10 ⁴ 1.4×10 ⁵ 2 5.6×10 ⁴ 3.6×10 ⁴ 8.2×10 ³ 1.0×10 ⁴ 3.3×10 ⁴ 1.7×10 ⁴ 3 2.1×10 ⁵ 5.4×10 ⁵ 3.1×10 ⁴ 4.0×10 ² 8.3×10 ³ 3.3×10 ³ 平均 1.3×10 ⁵ 2.1×10 ⁵ 1.6×10 ⁴ 1.3×10 ⁴ 2.4×10 ⁴ 5.3×10 ⁴ TCBS 2 5.0×10 ⁵ 3.5×10 ⁴ 6.0×10 ² 3.5×10 ⁴ 2.1×10 ⁵ 8.4×10 ⁴		3	-			1.2×10^3		-
培地 blank 5秒 10秒 15秒 20秒 25秒 CHROM agar 1 1.3×10 ⁵ 4.2×10 ⁴ 8.1×10 ³ 2.8×10 ⁴ 3.2×10 ⁴ 1.4×10 ⁵ 2 5.6×10 ⁴ 3.6×10 ⁴ 8.2×10 ³ 1.0×10 ⁴ 3.3×10 ⁴ 1.7×10 ⁴ 3 2.1×10 ⁵ 5.4×10 ⁵ 3.1×10 ⁴ 4.0×10 ² 8.3×10 ³ 3.3×10 ³ 平均 1.3×10 ⁵ 2.1×10 ⁵ 1.6×10 ⁴ 1.3×10 ⁴ 2.4×10 ⁴ 5.3×10 ⁴ TCBS 2 5.0×10 ⁵ 3.5×10 ⁴ 6.0×10 ² 3.5×10 ⁴ 2.1×10 ⁵ 8.4×10 ⁴	65							
TCBS $ \begin{array}{c} 1 & 1.3 \times 10^5 & 4.2 \times 10^4 & 8.1 \times 10^3 & 2.8 \times 10^4 & 3.2 \times 10^4 & 1.4 \times 10^5 \\ 2 & 5.6 \times 10^4 & 3.6 \times 10^4 & 8.2 \times 10^3 & 1.0 \times 10^4 & 3.3 \times 10^4 & 1.7 \times 10^4 \\ 3 & 2.1 \times 10^5 & 5.4 \times 10^5 & 3.1 \times 10^4 & 4.0 \times 10^2 & 8.3 \times 10^3 & 3.3 \times 10^3 \\ \hline \hline 1 & 3.9 \times 10^4 & 1.5 \times 10^4 & 2.0 \times 10^3 & 9.5 \times 10^3 & 2.2 \times 10^4 & 1.9 \times 10^5 \\ \hline 1 & 2.0 \times 10^5 & 3.5 \times 10^4 & 6.0 \times 10^2 & 3.5 \times 10^4 & 2.1 \times 10^5 & 8.4 \times 10^4 \\ \hline 1 & 3.9 \times 10^5 & 3.5 \times 10^4 & 6.0 \times 10^2 & 3.5 \times 10^4 & 2.1 \times 10^5 & 8.4 \times 10^4 \\ \end{array} $			hlank	5利)	10₹/\	15秒	20₹/)	25利)
CHROM agar 2 5.6×10^4 3.6×10^4 8.2×10^3 1.0×10^4 3.3×10^4 1.7×10^4 工力 3.1×10^5 5.4×10^5 3.1×10^4 4.0×10^2 8.3×10^3 3.3×10^3 平均 1.3×10^5 2.1×10^5 1.6×10^4 1.3×10^4 2.4×10^4 5.3×10^4 TCBS 1.5×10^4 1.5×10	<u> →□→╚</u>	1					- 15	
TCBS 3 2.1×10^5 5.4×10^5 3.1×10^4 4.0×10^2 8.3×10^3 3.3×10^3 3.3×10^3 3.3×10^4 1.3×10^5 2.1×10^5 1.6×10^4 1.3×10^4 2.4×10^4 5.3×10^4 1.3×10^4 $1.5 \times $								
平均 1.3×10^5 2.1×10^5 1.6×10^4 1.3×10^4 2.4×10^4 5.3×10^4 1.3×10^4	CHROM agar	3						
TCBS 1 3.9 × 10 ⁴ 1.5 × 10 ⁴ 2.0 × 10 ³ 9.5 × 10 ³ 2.2 × 10 ⁴ 1.9 × 10 ⁵ 5.0 × 10 ⁵ 3.5 × 10 ⁴ 6.0 × 10 ² 3.5 × 10 ⁴ 2.1 × 10 ⁵ 8.4 × 10 ⁴		立均						
TCBS 2 5.0×10^5 3.5×10^4 6.0×10^2 3.5×10^4 2.1×10^5 8.4×10^4				1.5 \(\sigma 10^4	2 0 v 10 ³			1 0 > 10
	TCBS							
	. 000	3	1.3×10^4	2.0×10^{4}	4.6×10^3	2.5×10^3	4.1×10^4	2.3×10^{4}

表7各種すり身および白菜漬けにおける腸炎ビブリオのD値

食品 -	加熱温度							
R III	50	55	60	65				
白身魚すり身	27.03	4.98	4.22	2.61				
イワシすり身	22.22	8.62	6.99	4.70				
マグロすり身	31.25	8.62	3.48	2.63				
エビすり身	17.24	10.87	5.71	7.30				
白菜漬け	21.28	LA	18.52	12.20				

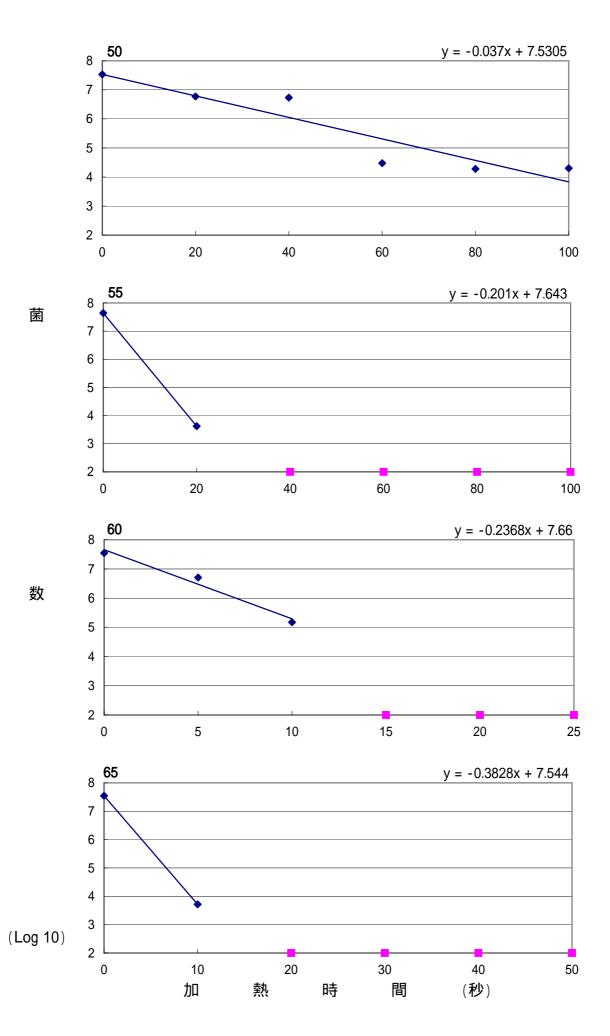


図 1 白身魚すり身の加熱温度と腸炎ビブリオの死滅

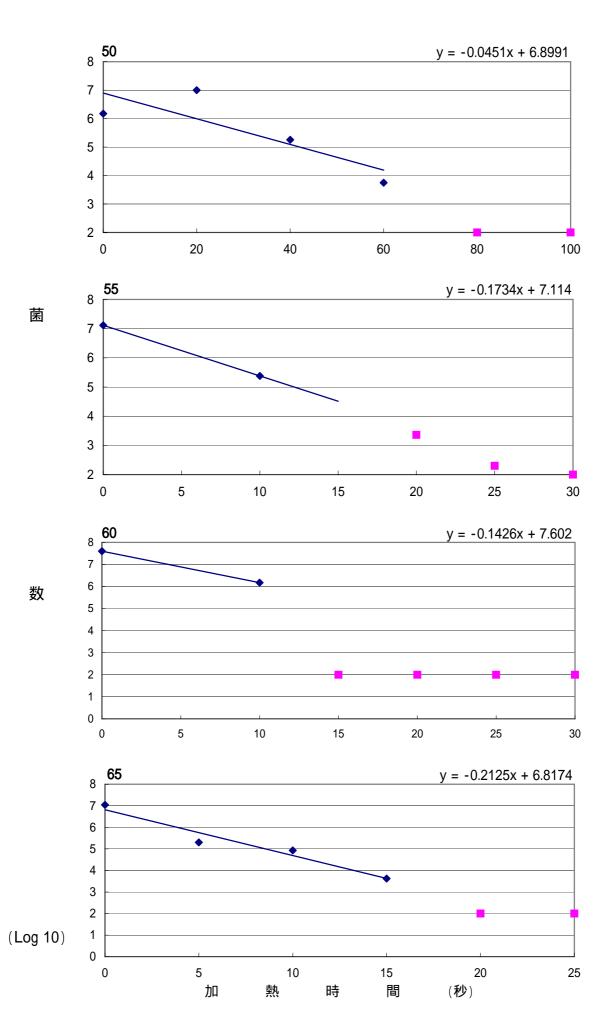


図2イワシすり身の加熱温度と腸炎ビブリオの死滅

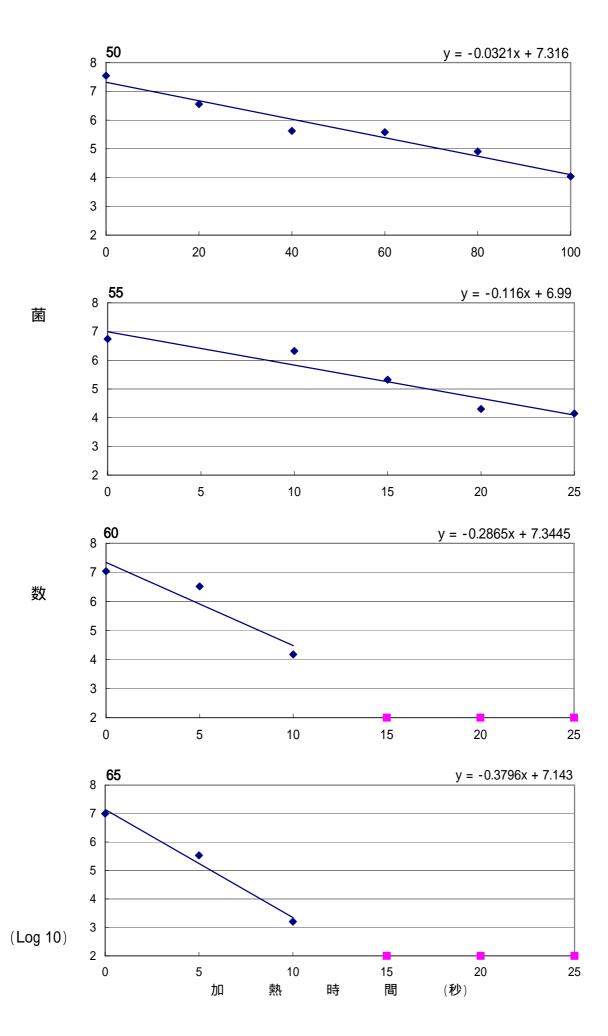


図3マグロすり身の加熱温度と腸炎ビブリオの死滅

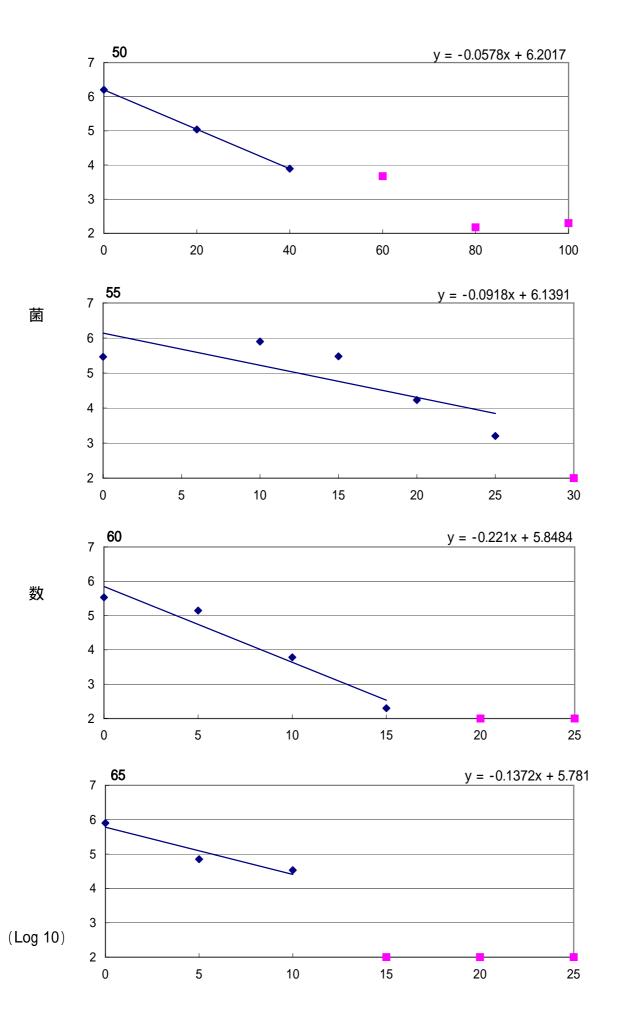


図4エビすり身の加熱温度と腸炎ビブリオの死滅

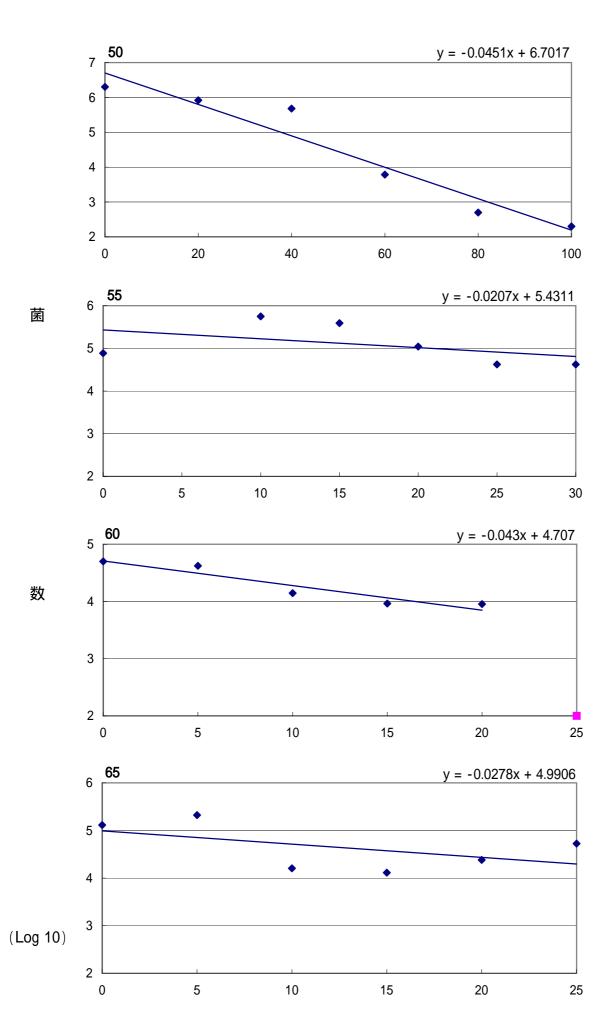
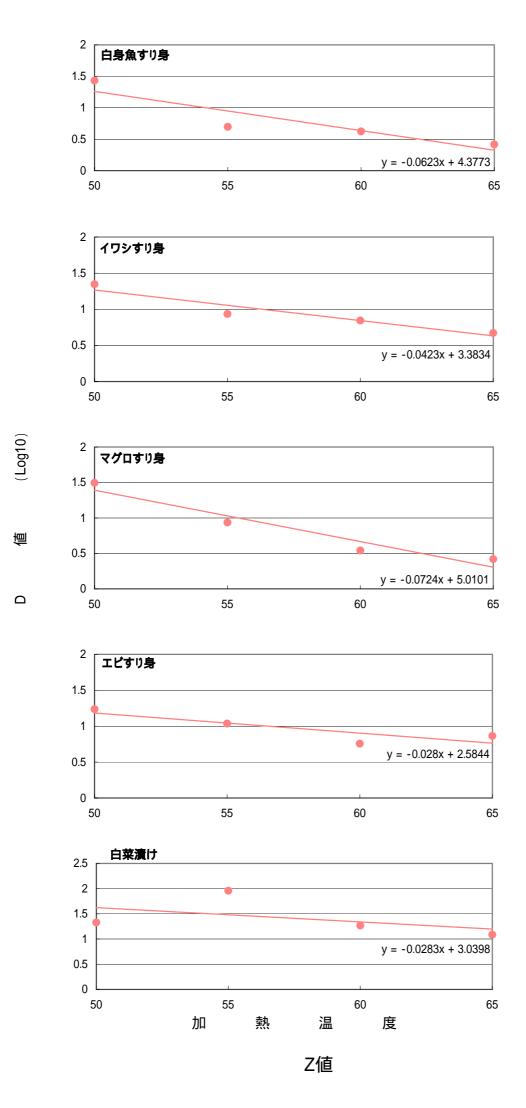



図 5 白菜漬けの加熱温度と腸炎ビブリオの死滅

